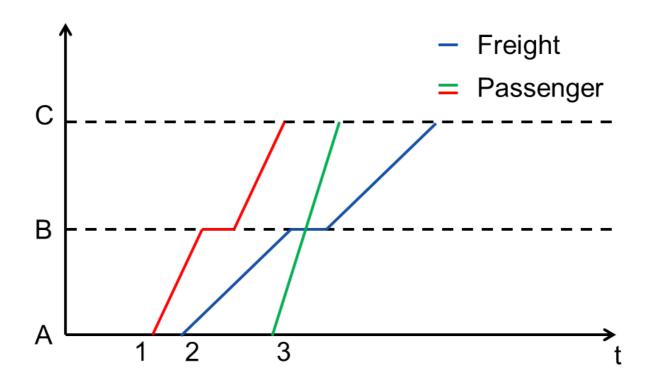


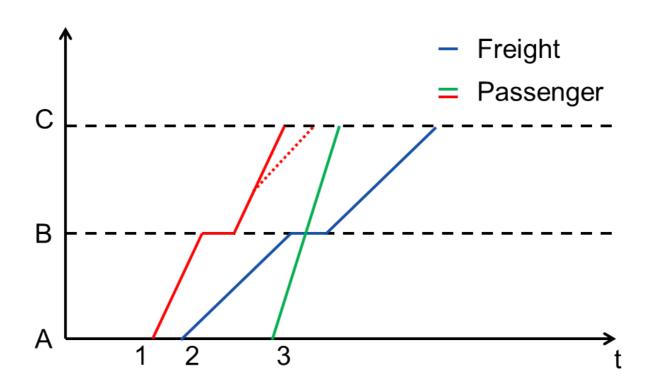
Combining optimization and simulation to improve railway timetable robustness

Johan Högdahl, Markus Bohlin, Oskar Fröidh

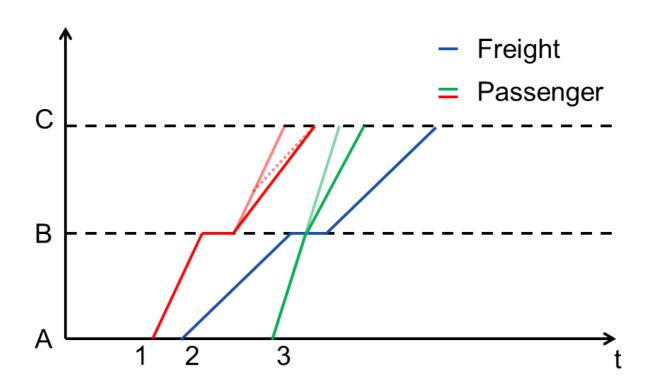
KAJT-dagarna, April 2017

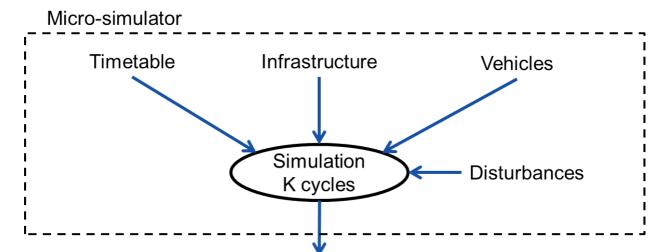
Background


- ► Timetables are constructed to maximize quality parameters (e.g. punctuality, travel time, frequency of travel, etc.)
- ► However, quality parameters depend also on a large number of complex factors incl. other trains and the infrastructure (signals, switches, etc.)
- Real-world quality data exists only for traffic that actually happened.

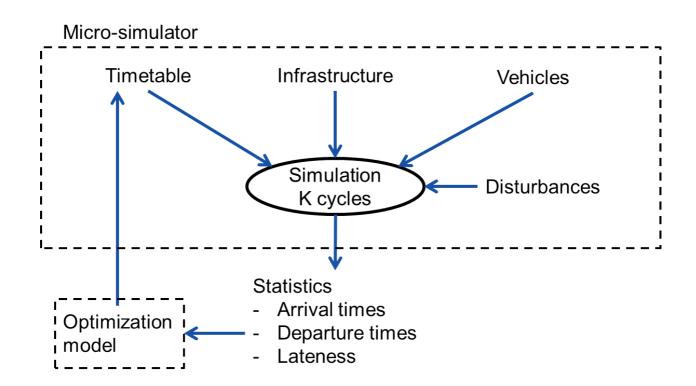

Combining simulation and optimization

- Use microscopic simulation to generate data for a large number of timetables.
- Base decisions on this data, through multi-criteria timetable optimization.
- Advantages:
 - Simulation allow estimation of delays for new timetables
 - Optimization allows the "best" timetables to be found.
- ► Future: iteration to find local optima, random sampling to approximate global optima.





Method overview



Statistics

- Arrival times
- Departure times
- Lateness

Method overview

Method overview - The optimization model

Sets

- T the set of trains
- S the set of stations
- X the set of feasible timetables
- E_s the set of events at station s

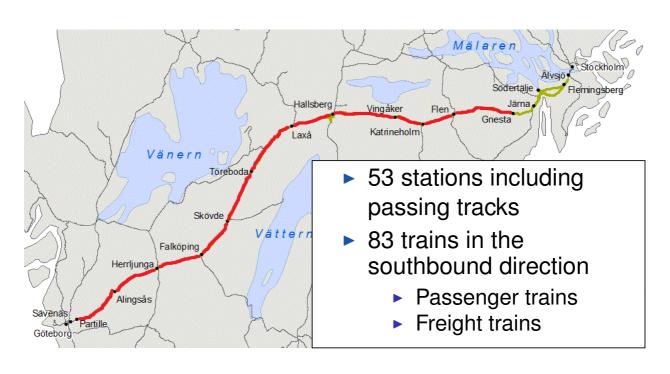
Parameters

- $ightharpoonup \overline{t}_i^h$ the time of event i for train h in the input timetable
- $\bar{x}_{i,j}^{h,k}$ the order of event *i* and *j* for train *h* and *k*, respectively, in the input timetable.

Decision variables

- $ightharpoonup t_i^h$ the time of event *i* for train *h*.
- $x_{i,j}^{h,k}$ the order of event i and j for train h and k, respectively.

Method overview - The optimization model


We are considering the following timetabling problem:

minimize
$$f(t) = \alpha F(t) + (1 - \alpha) G(t)$$

s. t. $t \in X$,
 $X_{i,j}^{h,k} = \bar{X}_{i,j}^{h,k}, \quad \forall (h,i), (k,j) \in E_s, \forall s \in S,$
 $(h,i) \neq (k,j),$
 $t_1^h = \bar{t}_1^h, \quad \forall h \in T$

- ► *F*(*t*) total scheduled travel time for the passengers and freight.
- G(t) total predicted delay for the passenger and freight.
- ho a weighting parameter to balance the importance of F and G.

Computational experiment

Computational experiment

Experiment overview

- The initial timetable have been simulated 200 cycles. The duration of each simulation cycles is from 5 AM to 6 PM. (All train that operates between 5AM and 12PM have been selected)
- 2. The arrival times have been extracted to compute the delay distributions.
- 3. The optimization problem have been solved for 100 values of α .
- 4. 11 timetables have been selected for validation.

Validation

► The timetable have been simulated 50 cycles and the punctuality have been evaluated.

Computational experiment - Results

- ightharpoonup Each value of α represents an optimized timetable.
- A smaller value on α increased importance of minimizing delays.

	Value of α					
Max delay	0.1	0.2	0.3	0.4	0.5	Input
0	49.9	47.9	41.8	27.1	2.8	34.8
1	92.1	90.8	82.7	68.1	48.4	85.9
3	98.4	98.0	96.3	87.5	81.5	97.2

Note: result is a convex upper hull of the Pareto frontier (not the exact frontier).

Conclusions and future work

Conclusions

- Based on the results from the experiments it seems possible to improve punctuality by combining optimization and simulation as suggested.
- ► The method does give one timetable which is the "best". Other methods and aspect may have to be considered to choose one timetable.
- ► The results indicate that the punctuality might be sensitive to small changes in the timetable.

Future work

- Evaluate the performance when the method is iterated.
- Model more complex networks and single track sections.
- Improve the delay predictor.